Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains.
نویسندگان
چکیده
Secondary metabolism in fluorescent pseudomonads is globally regulated by gacS, which encodes a membrane-bound sensor kinase, and gacA, which encodes a transcriptional response regulator. Spontaneous mutation in either gene blocked biosynthesis of the antimicrobial compounds hydrogen cyanide, 2,4-diacetylphloroglucinol, pyoluteorin, and pyrrolnitrin by the model biocontrol strain Pseudomonas fluorescens CHA0. Spontaneous mutants also had altered abilities to utilize several carbon sources and to increase medium pH compared with the wild type, suggesting that gacS and gacA influence primary as well as secondary bacterial metabolism. Inoculant efficacy for biocontrol was significantly reduced by contamination with regulatory mutants which accumulated during inoculum production. Spontaneous mutants accumulated in all 192 separate liquid cultures examined, typically at a frequency of 1% or higher after 12 days. During scale-up in a simulated industrial fermentation process, mutants increased exponentially and accounted for 7, 23, and 61% of the total viable cells after transfer to 20-, 100-, and 500-ml preparations, respectively. GacS(-) and GacA(-) mutants had identical phenotypes and occurred at the same frequency, indicating that the selective pressures for the two mutants were similar. We developed a simple screening method for monitoring inoculant quality based on the distinctive appearance of mutant colonies (i.e., orange color, enlarged diameter, hyperfluorescence). Mutant competitiveness was favored in a nutrient-rich medium with a high electrolyte concentration (nutrient broth containing yeast extract). We were able to control mutant accumulation and to clean up contaminated cultures by using certain mineral amendments (i.e., zinc, copper, cobalt, manganese, and ammonium molybdate) or by diluting media 1/10. Spontaneous mutants and genetic constructs had the same response to culture conditions. Zinc and medium dilution were also effective for improving the genetic stability of other P. fluorescens biocontrol strains obtained from Ghana and Italy.
منابع مشابه
The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5.
Three global regulators are known to control antibiotic production by Pseudomonas fluorescens. A two-component regulatory system comprised of the sensor kinase GacS (previously called ApdA or LemA) and GacA, a member of the FixJ family of response regulators, is required for antibiotic production. A mutation in rpoS, which encodes the stationary-phase sigma factor sigmaS, differentially affects...
متن کاملPosttranscriptional repression of GacS/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0.
In the plant-beneficial soil bacterium Pseudomonas fluorescens CHA0, the production of biocontrol factors (antifungal secondary metabolites and exoenzymes) is controlled at a posttranscriptional level by the GacS/GacA signal transduction pathway involving RNA-binding protein RsmA as a key regulatory element. This protein is assumed to bind to the ribosome-binding site of target mRNAs and to blo...
متن کاملRole of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0.
In Pseudomonas fluorescens biocontrol strain CHA0, the two-component system GacS/GacA positively controls the synthesis of extracellular products such as hydrogen cyanide, protease, and 2,4-diacetylphloroglucinol, by upregulating the transcription of small regulatory RNAs which relieve RsmA-mediated translational repression of target genes. The expression of the stress sigma factor sigmaS (RpoS...
متن کاملA regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113.
The GacS-GacA two-component signal transduction system, which is highly conserved in gram-negative bacteria, is required for the production of exoenzymes and secondary metabolites in Pseudomonas spp. Screening of a Pseudomonas fluorescens F113 gene bank led to the isolation of a previously undefined locus which could restore secondary metabolite production to both gacS and gacA mutants of F113....
متن کاملThree small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0.
In many Gram-negative bacteria, the GacS/GacA two-component system positively controls the expression of extracellular products or storage compounds. In the plant-beneficial rhizosphere bacterium Pseudomonas fluorescens CHA0, the GacS/GacA system is essential for the production of antibiotic compounds and hence for biological control of root-pathogenic fungi. The small (119-nt) RNA RsmX discove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 66 8 شماره
صفحات -
تاریخ انتشار 2000